Relaxed Euler systems and convergence to Navier-Stokes equations

نویسندگان

چکیده

Abstract We consider the approximation of Navier-Stokes equations for a Newtonian fluid by Euler type systems with relaxation both in compressible and incompressible cases. This requires to decompose second-order derivative terms velocity into first-order ones. Usual decompositions lead approximate tensor variables. construct vector variables using Hurwitz-Radon matrices. These are written form balance laws admit strictly convex entropies, so that they symmetrizable hyperbolic. For smooth solutions, we prove convergence uniform time intervals. Global-in-time is also shown initial data near constant equilibrium states systems. results established not only but those

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler and Navier - Stokes Equations

We present results concerning the local existence, regularity and possible blow up of solutions to incompressible Euler and NavierStokes equations.

متن کامل

Lagrangian Structures for the Stokes, Navier-stokes and Euler Equations

— We prove that the Navier-Stokes, the Euler and the Stokes equations admit a Lagrangian structure using the stochastic embedding of Lagrangian systems. These equations coincide with extremals of an explicit stochastic Lagrangian functional, i.e. they are stochastic Lagrangian systems in the sense of [6].

متن کامل

Euler and Navier-Stokes equations on the hyperbolic plane.

We show that nonuniqueness of the Leray-Hopf solutions of the Navier-Stokes equation on the hyperbolic plane (2) observed by Chan and Czubak is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on (n) whenever n ≥ 3. We also describe the corresponding general Hamiltonian framework of hydrodynamics on complete Riemannian manifolds, which includes the hyperboli...

متن کامل

Algorithms for the Euler and Navier-stokes Equations for Supercomputers

We consider the steady state Euler and Navier-Stokes equations for both compressible and incompressible flow. Methods are found for accelerating the convergence to a steady state. This acceleration is based on preconditioning the system so that it is no longer time consistent. In order that the acceleration technique be scheme independent this preconditioning is done at the differential equatio...

متن کامل

Logarithmically Improved Criteria for Euler and Navier-Stokes Equations

In this paper we prove the logarithmically improved Beale-Kato-Majda's criterion to the three-dimensional incompressible Euler and Navier-Stokes equations as well as the logarithmically improved Serrin's criteria to the three-dimensional incompressible Navier-Stokes equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2021

ISSN: ['0294-1449', '1873-1430']

DOI: https://doi.org/10.1016/j.anihpc.2020.07.007